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The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and

information sciences. As part of this endeavor, UH-Clear Lake proposed a -..
partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC's main missions, including

administrative, engineering and science respons_ilities. JSC agreed and entered into

a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to

jointly plan and execute such research through RICIS. Additionally, under

Cooperative Agreement NCC 9-16, computing and educational facilities are shared =

by the two institutions to conduct the research.
The mission of RICIS is to conduct, coordinate and disseminate research on

computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear

Lake, the mission is being implemented through interdisciplinary involvement of

faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear
Lake establishes relationships with other universities and research organizations,

having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information

sciences. Working jointly with NASA/JSC, RICIS advises on research needs,

recommends principals for conducting the research, provides technical and

administrative support to coordinate the research, and integrates technical results

into the cooperative goals of UH-Clear Lake and NASA/JSC.
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Storage Nanagement in Ada as a Risk to the Developoment of Reliable Software

This report addresses a particular concern associated with the use of Ada

for the development of Space Station software. The general concern is in the

assurance of proper functionality of software which is to be depended upon for

llfe and property. With this as the highest priority, the possibility of

non-deterministic or difficult to verify software must be addressed; risks to

the development of reliable software need to be identified and approaches

outlined for reducing the risk.

In particular, this report will address storage management as one of these

risks. The project of which this is a part is concerned with identifying such

risks, clarifying their nature, and investigating and comparing alternative

approaches. As a first step, this report addresses only the identification

and clarification of the risk.

z:

Storage management is not a new concern for NASA. As one of two limited

resources in computing (CPU time being the other), and computing resources

being in critical demand in most real-tlme computing applications, it is often

addressed in budgeting and allocation decisions central to the systems

software architecture and design. The space station requirements, however,

pose new complexities in size and distributed system interactions. Ada and

dynamic storage management are seen as tools to address this complexity, but

use of these tools while maintaining and demonstrating a high standard for

reliability poses a significant challenge.

Dynamic storage management in any form introduces a complexity of

processing which, without some control and careful design, must be considered

risky for critical software. In the general case, storage use which is

dependent upon program execution implies that, in order to assure no storage

use faults (e.g., out of storage), exhaustive testing must be applied. In

complex systems such testing is impractical. Fortunately many forms of

dynamic storage management offer built-in limitations and additional analysis

techniques may offer assurances against storage errors.
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Section 1

ELEMENTS OF RISK

In simple terms, the risk to program reliability is derived from the use

of a new language and from the potential use of new storage management

techniques. With the novelty of Ada and associated support software, there is

a lack of established guidelines and procedures, drawn from experience and

common usage, which assure reliable behavior.

1.1 A New Language and its Support Software

The first source of risk to look at is simply the introduction of a new

language. In the case of Ada, consideration also has to be given to all of

the new support software which must accompany the language (compilers and

runtime support systems, etc.). Ada dictates consideration of the support

software because the language does not address the details of storage

utilization, thus much freedom is given to different approaches provided by

the support software.

Consider the concerns of an application writer when faced with a new

language. In the case of storage management some of these are:

o

o

o

How is storage utilization tied to the various features of the

language?

How do different constructs in the language imply different storage

management requirements?

What control is there over various options in storage management

techniques?

Ada's lack of detail in storage management complicates the issue. Some

aspects of storage management are implied by the definition of the language

while other aspects clearly must be defined by the implementation.

W0-123 Vol. 1 I-I SOFTeCH
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To ease these problems, a coherent model of storage management must be

presented which answers these concerns, the simpler the better. Development

of reliable software depends on such a coherent model and upon the reliable

implementation of that model in the support software.

v

1.2 New Storage ManaGement Techniques

The second source of risk is new storage management techniques. In

previous systems, storage budgeting and allocation have always been able to

depend upon a relatively static model of storage use. In some designs,

storage lies unused, waiting for invocation of the code which would put it to

actual use. This means a somewhat excessive allocation of storage, but the

program and programmer (designers, system verification, etc.) can depend upon

it being available immediately and without question at the point of its use.

Different techniques have been introduced to provide a more effective use

of storage. Common blocks and equivalence statements in FORTRAN provide a way

to set aside an area of storage and put it to use in different ways at

different times in the program's execution. Procedural languages which use a

program stack for procedure-related data (local data, parameters, etc.)

provide a mechanism for associating storage with procedure execution on an as

needed basis only, eliminating much of the excessive allocation problem, but

introducing a more complex dynamic model of storage use. A more extreme step

in dynamic storage allocation is the use of a dynamic storage heap, where

storage is not allocated for any particular use until it is needed at runtime.

With a storage heap, storage is available on demand for any purpose, in any

amount provided a suitable contiguous chunk remains in the heap, and is

returned to the heap when it is no longer to be accessed for that particular

use. Variations of these techniques exist in numerous forms, each with

differing degrees of complexity and dynamic behavior patterns.

Ada provides the possibility for just about any of these storage

management techniques, although equivalence and renaming of storage are

specifically outside the intended use of the language. Thus significant

freedom exists to utilize storage in whatever way best suits the application.

W0-123 Vol. 1 1-2 Sol=Tec. H



This freedom however is at the expense of a simple model of storage use and

the implicit assurance of storage availability when it is needed. While

storage management in Ada need not be fundamentally any different in the

approach required for resource budgeting and allocation, unfamiliarity and new

storage management models can add significant complexity to the process, and

thus increase the risk of a lack-of-resources error during program operation.

1.3 A Summary List

Based on these sources of risk, the following elements of risk can be

identified:

O

0

0

0

lack of knowledge of how storage management is tied to the use of the

language,

lack of control over how storage is managed,

lack of guidelines for establishing practical storage use budgets, and

lack of techniques to demonstrate proper behavior and assure a lack

of errors in actual use.

w
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Section 2

A FRAMEWORK FOR RELIABLE STORAGE MANAGEMENT

Dynamic storage management will require some changes to storage budgeting

and allocation policies. Storage allocation will become temporal and

associated with execution patterns. Similarly, the use of Ada introduces new

linguistic and compilation aspects to storage utilization. However, the

principles of storage budgeting and storage management are not changed. Given

sufficient control over storage utilization, the same principles of budgeting

can be applied.

Reliable storage management is based on two critical aspects: a detailed

model (budget) of how storage will be allocated and sufficient control over

storage utilization to ensure that actual storage use adheres to the budget.

Confidence in storage management comes from a well understood model of storage

use and confidence in the support software to implement that model. The

introduction of a new language and new storage management techniques need not

destroy this confidence so long as reliable support software implements a

manageable model of storage use.

Storage allocation in Ada will be covered in more detail in subsequent

reports, but for now note that budgets can be assigned to individual procedure

execution, task execution stacks, the number of active tasks and dynamic

allocation pools. Through the use of various language features, and if

necessary with specialized support software, various models of storage use,

including dynamic allocation, can be reliably managed.

An associated problem of reliable storage management is that of verifying

that storage errors will not occur. Again, a new language and new storage

management techniques do not change the principles of verification and program

testing, gith a well designed model of storage use, well understood

techniques of test and verification can be applied. For critical

applications, the requirements for test and verification will impose the

W0-123 Vol. 1 2-1 SOFTeCH



requirement for deterministic behavior of storage management. This may rule

out some forms of dynamic storage use, but not necessarily all.

The key to reliable storage utilization is the establishment of storage

use budgets and the understanding and control over storage use to fit within

that budget. In the case of dynamic storage management, it is necessary to

match the storage use budgets to the dynamic behavior of the system, and

possibly design the dynamic behavior of the system around the established

storage budgets. In the case of Ada storage management, it is necessary to

understand how storage use is tied to the language, what runtime variances

exist and what controls are available. In either case, the approach to

storage use and management rests on a basis of budgets and control.

Ew
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Section 3

COMPROMISES AND TRADEOPPS, THE BASIS FOR RECOMMENDATIONS

Unfortunately, no one answer will necessarily fit all situations. There

are conflicting goals with different priorities within different applications.

The factors which affect the selection of approach for storage management

include:

o

o

The critical nature of the software; the extent to which software

faults can be tolerated.

The cost of program development, in the sense that detailed attention

to storage use will require additional development effort.

The cost of support software to provide specific storage management

support and control over storage utilization.

The balance between risk due to the presence of dynamic storage

management with risk due to the adoption of a static storage

management scheme.

The last factor is of particular interest. One perspective is that static

memory management unnecessarily limits the expressiveness of the language.

Algorithms which are naturally stated in reeurslve form or using dynamically

allocated objects become burdened with additional code to manage a static pool

of data. Thus, while a static storage model presents a simple model to the

application developer, it can force complexities into the application itself.

This implies a tradeoff which must be recognized between the risk of

storage errors introduced by dynamic storage management and the risk of errors

introduced by its avoidance. Dynamic storage management introduces a

dependency on an Implementatlon's storage model and upon the reliability of

the support software, but is part of Ada because it offers the power to reduce

complexity and total storage requirements. The elegance and simplicity of a

recursive or multi-processing algorithm must be balanced against system

dependencies which may be difficult to impossible to verify for correctness.

W0-123 Vol. 1 3-1 SOI eCH
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For this'project, a range of solutions and an evaluation of the tradeoffs

will be provided. In critical applications, it can be expected that certain

programming forms will be restricted. On the other hand, it may be

anticipated that given enough resources to provide tools and adapt compilers

and runtime systems, the risks of dynamic storage management can be reduced to

a level approaching that of static storage management. As a compromise, there

may be an approximation to this ideal which is less taxing and considered

acceptable. It is hoped that a clearer picture of the alternatives and

dependencies will be the result of our effort.
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Relevant Aspects of the Language

In order to provide a framework for future consideration of dynamic

storage management in Ada, this paper will present a description of the

relevant aspects of the language. This description will be organized in two

main sections: Program Data Sources, and Declaration and Allocation in Ada.

i
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Section 1

Program Data Sources

w

r

i

Normally, programmers view the principle source of program data to be the

declaration or use of variables within the text of the program. Indeed this

is the principle source of large data blocks, but for completeness, two other

sources must be considered, making the list of data sources as follows:

m
0

0

0

Program Variables

Compiler Generated Objects

Runtime-Support Data (generated by runtime support library)

These three sources viii each be considered in turn.

1 "

=

i

1.1 Program Variables

Program variables in Ada come in many flavors, some very familiar and

others, perhaps less so. To understand the storage use of a program requires

an understanding of the storage required for the various types of program

variables. What follows is a quick overview of data typing in Ada and the

storage requirements for each. Special mention will be given to the options

for representation and storage use which programmers may find in different

implementations of the language.

Program Variables in Ada are either:

O

O

O

scalar data objects,

composites of scalar data objects, or

references to one of a collection of such data objects (called access

variables, to be discussed later)

W0-123 Vol. 2 1-1 SO ecN
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To further divide the world of Ada variables, scalar data objects consist of:

0

0

numeric values, or

enumerated values (one of an enumerated list of legal values, e.g.,
True or False, etc.)

Enumeration variables provide a convenience for the programmer, allowing

mnemonic naming of values which are often represented as unsigned integers. ,

Enumeration variables, particularly the character enumeration type, provide

the basic mapping from non-numerlc values (symbols) to the numeric

representations available on the hardware. For both enumeration variables and

numeric variables, if supported by the compiler, the user may control the

representation and therefore the amount of storage required. Generally scalar

values are represented as bytes, words or double-words in memory.

Composite variables are either organized as collections of similarly typed

objects, called arrays, or as collections of dissimilar objects called

records. Again, provisions in the compiler may allow for control over the

layout of components within a composite object. Generally composite variables

require a block of contiguous storage of roughly the sum of the component

object sizes. Some increase in storage may be required for padding and

alignment to improve access to the components.

These aspects to the storage requirements of the language are not

significantly different from those of other languages. While other primitive

types may be found in other languages, similar typing of data may be formed

from the flexible typing rules of Ada.

Perhaps more unusual among programming languages, Ada includes

specifications for the precision and range of numeric values, allowing the

programmer to explicitly specify these characteristics within the declaration

of numeric objects. Most compilers will select an appropriate size according

to these specifications from among a small number of options supported by the

hardware, typically the byte, word or double-word mentioned above. Because of

this it may not be explicitly clear what size object has been created. This

size, however, is usually not too difficult to derive for each machine. One

W0-123 Vol. 2 1-2 soFrecH
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would expect familiarity to be established within each project group for a

particular target implementation.

A further complication in Ada has to do with the declaration of records.

Ada allows for the named declaration of a variable record type, within which

the components and sizes of components may vary from one object to another.

Under certain circumstances Ada provides the capability to declare a variable

which may be assigned different variants of the record. In order to

accommodate such a situation, implementations of Ada must either allocate

enough storage to accept the largest possible variant, or turn to dynamic

storage allocation. In the later case, if an assignment exceeds the current

storage size, new storage is allocated and the previous storage is left for

some other use. Clearly, such declarations need special attention when

planning and reviewing storage requirements.

The third category of program variable is the access variable. It is used

for referencing one of a collection of objects which may be allocated

dynamically by the program. These objects are all of the same type, but may

be of any of the above program variable types, i.e., an access variable may

reference a collection of scalar objects or a collection of composite objects

of any type. The collection of objects accessible from a given access

variable is called a "collection" in the LRM (Language Reference Manual). The

identification of these objects as a distinct body of storage is an important

aspect to storage management in the language.

Access variables themselves require a small amount of storage, typically

one or two words. The collection of objects accessible from an access

variable, however, is potentially unbounded. Ada allows an optional clause

which provides an upper bound on the storage allocated for such a collection.

Exceeding this limit raises an exception (error condition) even while storage

remains for other allocations.

The final category of program variables, that of task identifiers, is the

most unusual in terms of its association with storage requirements. There are

in fact several items of storage which can be associated with tasks, however,

W0-123 Vol. 2 1-3 SOFTeCH



none may be directly referenced by reference to the task variable. For our

purposes these may be listed as:

any variables declared in the task body,

the task execution stack (for storage required by procedures called

by the task),

any objects allocated dynamically by the execution of the task,

the task control block (for each task object), and

the task descriptor block (for each task type).

Only the first three of these will be considered here as program variable

storage which can be associated with a task. The task control block and task

descriptor block will be considered as runtime support data and compiler

generated objects respectively. Ada allows an optional clause specifying the

amount of storage to be reserved for the execution of a task. This typically

specifies the size of only the task execution stack, but which objects are

allocated from this reserved storage and which are allocated separately is not

prescribed by the LRM. Use of this clause is necessarily implementation

dependent.

E
w

w

w

w

w

1.2 Compiler Generated Objects

The second source of data for an executable program is the compiler. For

many features of the language it is necessary for the compiler to generate

data objects for reference at runtlme. This is of course dependent on the

program text, but may be independent of any variables declared in the program.

Perhaps the most common use of compiler generated objects is for

expression evaluation requiring intermediate values to be held in storage.

These temporaries may be needed within the execution of a single statement or

across a range of statements. Another use is for runtlme type descriptors.

Sometimes, but not always attached to data objects, these descriptors are

associated with the type declarations of the program. Of these, the most

common use is for arrays, giving the number of dimensions, and-upper and lower

W0-123 Vol. 2 I-4 SCIFTeCH
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bounds of indices for each dimension. A third common use of compiler

generated objects is the runtime storage of enumeration literals. This

supports the language features of I/O and image attributes.

In a different category are objects for use in program control. Very

often it is necessary to save such information as return addresses and

exception raised flags. A similar example would be indexed-jump tables for

case statements, although different implementations may treat this as part of

the object code. This introduces a complicating factor in the discussion,

that some implementations may require certain objects to be treated as data

while others will treat them as code. In general, we will treat static,

compiler-generated data which is part of program control as part of the object

code. Compiler generated objects can then refer to storage for data required

by the compiler but generated at runtime.

There are numerous situations which may require the use of compiler

generated variables. It is, however, highly dependent on the implementation

approach. Users will have to become familiar with each implementation's use

of compiler generated objects to fully anticipate the storage utilization of a

given program.

m

i

w

1.3 Runtime Support Data

The last category of data sources is the runtime support library itself.

Most implementations of Ada will have a number of support routines which can

be called upon to implement some of the more complex aspects of the language,

tasking and I/0 being the principle candidates. The task control block has

already been mentioned as one product of the runtlme support library. This

object is used to help control the execution, waiting and rendezvous of active

tasks in the system. Similarly, to help manage a dynamic storage heap and

exceptions properly, other objects and additions to program declared objects

may be generated by the runtime support library. Again, this is a very

individual characteristic of each implementation which will require

familiarity on the part of the user in order to fully appreciate the storage

.... l

demands of the program.
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A sampling of runtime support data includes:

task control blocks

heap management control records

procedure activation records of the runtime library routines

file control blocks (the entire I/0 support requirements may be quite

extensive)
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Section 2

DECLARATION AND ALLOCATION IN Ada

Ada requires all program data to be explicitly declared and qualified in

terms of the type of information and the operations which wlll be allowed (the

Ada type specification). This is a starting point for consideration of

storage management in the language. The program data is completely listed

within a program unit speciflcation or its declarative part. It is the nature

of that program unit (the declaration's context) and the type of the data

which determines the nature of storage management which wlll be utilized.

A second aspect of the language affecting storage management is the

presence of "allocators" which provide for dynamic allocation of objects above

and beyond the declared objects of the various program units. Allocators are

always introduced by the keyword NEW.

These two aspects of allocation are covered in the next two subsections

respectively.

w

r_

!

2.1 Declared Objects

In order to understand the relationship between program declarations and

storage allocation it is important to have a basic knowledge of elaboration.

This is covered first, followed by a discussion of different declaration

contexts and their differing requirements for storage management.

2.1.1 Elaboration of Program Declarations

The relationship between program data declarations and any implied storage

allocations is intrinsically tied to the concept of elaboration. The Language

Reference Manual refers frequently to the process of elaborating an object's

declaration. The process of elaboration refers to the evaluat{on Of the

WO-123 Vol. 2 2-1 SOFTeCH
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clauses which make up a declaration. It is not necessary to understand all of

the subtleties which define the elaboration process, but is important to

recognize that each declaration gets evaluated and processed in order to

establish a variable prior to its use.

It is convenient to talk of the process of elaboration as a sequential

processing of each declaration occurring prior to the execution of a given

program unit. This is processing required to establish a variable's size

(possibly dynamically determined), location and initial contents prior to the

variable's use. The LRM has formalized the definition of this process and

stated requirements for the nature and order of elaboration.

Elaboration can also be thought of as a sequential processing of

declarations by the compiler in order to interpret the meaning of the program

text, such as exactly which objects and operations are being referred to by

the use of particular names. If an Ada program were being interpreted, these

two processes would occur at the same time. It is in this context that the

term refers to a single process.

In the case of compiled object code, many of the implications of

elaboration have been already been established and others have been combined,

so that individual actions at runtime are only infrequently associated with

the elaboration of a specific declaration. For example, consider the

following code segment:

Procedure XYZ ( N : in integer) is

A : integer;

B : float;

vector : array ( 1..N ) of float;

Begin

.u.

End;

In an interpretive system, the local variables would be processed

sequentially while reading the text during execution of the program. Local

names would be established, storage allocated and initial values assigned,

each at the time the declaration is encountered. In a compiled system, the

compiler would process the text, reading all declarations and generating code

WO-123 Vol. 2 2-2 SOFTeCH



to perform some steps at runtime as necessary. However, name association

would require processing only at compile time, with the results being built

into the object code produced. Thus some processing can be eliminated from

runtime, and the opportunity exists to combine the sequential steps. In this

case, only the size of vector would be left to runtime determination and

allocation of storage for all of the local variables could be combined into

the allocation of a single block. The allocation could be accomplished with a

single increment of a stack pointer.

m

w

m
i

w

w

w

w

m
w
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2.1.2 Declaration Context and Allocation

Storage allocation is stated as the last of several steps required for the

elaboration of a declaration. As this allocation occurs logically in a

sequential fashion as a part of elaboration, the static context of a

declaration and the implications of dynamic execution of the program text

define the requirements for storage management. This is the long way around

for what is often a familiar and simple process, but it helps to understand

the formal terminology and establish a consistent framework for discussion.

In the above example it was noted that allocation of storage would be a

runtime activity. This is reflective of the language characteristic that all

procedures and functions are potentially reentrant, i.e., may have multiple

entries prior to any one exit. Reentrancy is introduced by the features of

recurslon and multi-tasking. Reentrancy prohibits the pre-runtlme allocation

of local data for procedures. It is an example of the significance of context

to storage management requirements.

For declarations within subprogram units (procedures and functions, and

begin blocks within them) a FIFO or stack based storage management scheme is

required. Storage is allocated upon entry to the unit (when called) and

deallocated upon exit. Because allocation and deallocation follow the

discipline of subprogram entry and exit, a stack is a sufficient storage

management scheme. It is necessarily dynamic, but more manageable than a

generalized heap mechanism.
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- k

m

--7

w

Program library unit packages (those which are not nested in any other

program unit) are the one context allowing pre-runtime allocations. These

packages define data and subprograms which are "global" in nature and

available to all subprograms at all times. In this case there is no

requirement for multiple copies or dynamically created copies. (This does not

extend to declarations within subprograms declared in the package.)

Alternatively, packages may appear within subprogram definitions, or in other

contexts. In these cases, storage for the package would be allocated at the

same time as other storage for the parent unit.

An implementation option exists which would extend static storage
!

allocation to declarations within subprogram units. Nhile the language

specifies in general that subprogram units are reentrant, to support recurslon

and multi-tasking, if these features are not needed and are not present (a

"promise" from the programmer) this may be indicated to the compiler via an

implementation defined pragma (e.g., PRAGMA STATIC). In this case, static

allocation for subprogram data may be adopted.

The declaration of tasks introduces the third distinct context for

declarations. The declaration of a unique task object, e.g.,

Task buffer_task is ... End buffer_task;

is similar in some respects to a procedure or function declaration, different

in others. If contained within a dynamic program context, then storage must

be allocated dynamically as for other data in this context. If, however it is

contained in a static context (library unit package), storage may optionally

be allocated pre-runtime along with the other package data.

Note, however, that a task may be declared as a task type, e.g.,:

Task Type buffer task is ... End buffer task;.

In this case, the data is not allocated at the time the declaration is

encountered, but rather at the time that a task object is allocated with the

new operator.
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The final context of special interest is that of Generic Unit declarations.

The difficulty in considering generic units is the significant dependency on

various implementation strategies. One approach to generic units is to treat them

essentially as source macros. With this approach, the Instantiation of a generic

unit is treated just as if the generic declaration were expanded in place. Thus

storage utilization is no different from other declarations at the point of

instantlation. Unfortunately, this can lead to excessive and unnecessary

redundancy in storage allocation.

Other more complicated implementation techniques are possible, but more

difficult to describe in terms of their memory utilization. Storage requirements

in these cases will be a combination of storage requirements derived from the

specific instantlatlons and from the generic unit's definition itself.

2.2 New Allocations

w

w

The second source of allocation requirements are the presence of NEW clauses

in the program text. These allocators require the dynamic allocation of storage

at runtlme. Such allocation, however, is always associated with the access type

of the variable which will initially reference the object, and thus added to the

implicit collection of storage for that access type. Such collections may be

individually bounded by representation clauses or collectively bounded by the

amount of free storage available in the target computer. The ability to set

specific limits on storage allocated to individual collections is a principle

source of storage management control in Ada.

Dynamic Allocation for NEW data objects generally requires the support of a

heap allocation scheme. The exception to this rule involves the presence of a

clause limiting storage allocations for a constrained access type (where the

allocated size is known pre-runtime). In this case, the storage can be allocated

at the time the access type is introduced, and linked into a queue of available

storage blocks. Management for these storage blocks avoids the complications of a

general heap allocation scheme, is consequently much simpler and more time and

space efficient.
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It is easy to confuse characteristics of a programming language with

characteristics of an implementation of that language. For example, the Ada

Language Reference Manual imposes no limit on the size of an array, but almost

every implementation has such a limit. Similarly, currently available

implementations of the rendezvous are typically slow, but the rendezvous is

not an inherently inefficient language feature; several schemes for efficient

implementation of the rendezvous have been proposed, though they have not

generally been incorporated in current compilers.

This report distinguishes between storage-management characteristics of

the Ada language and storage-management characteristics of Ada

implementations. The distinction is relevant to this study for a number of

reasons. First, it identifies criteria that may be important in the selection

of a compiler. Second, it suggests aspects of program behavior that may vary

when a program is ported from one compiler to another. Appropriate

programming guidelines can limit the effects of this variance. Third, the

distinction clarifies which Ada programming guidelines are universally

appropriate and which guidelines are appropriate only for certain

implementations.

w

The report is divided into three sections. Section 1 defines terms that

will be used in this report in a narrow and precise sense. Section 2

describes the storage-management implications of the Ada language. Section 3

describes storage-management options available to the Ada implementor and the

implications of the implementor's choice for the Ada programmer.

w

w
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Section 1

TERMINOLOGY

w

w

w

i

i

w

i
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i
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To avoid confusion, we adopt precise meanings for certain terms that are

commonly used in a variety of senses:

o collection

o designated variable

o collection region

o task

o correspond

o task object

o declared variable

o task unlt

o designate

All variables in an Ada program are created either by elaboration of a

declaration or evaluation of an allocator. We use the term declared variable

for the first klnd of variable and the term designated variable for the second

kind. (In the nomenclature of the Ada Language Reference Manual, an access

value designates the variable it points to. All variables created by

evaluation of an allocator, and no variables created by elaboration of a

declaration, are pointed to by access values).

In informal discussions, the term task is often used interchangeably with

task unit or task object. This can lead to confusion. The Ada Language

Reference Manual defines precise and distinct meanings for these terms, which

we adopt here:

A task is a process, i.e., a set of actions performed in sequence, as
if executed on its own virtual processor.
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A task object is a variable that corresponds to at most one task.

(The Ada Language Reference Manual states that the task object

designates the task, but we avoid that term to avoid confusion with

the other sense in which the Reference Manual uses the term

designates, to mean "points to"). Like any other Ada variable, a

task object may be either declared or designated. A task object may

come into existence before the corresponding task begins execution

and remain in existence after that task has terminated.

A task unit is program text consisting of a task declaration or

task-type declaration and a task body.

The variables designated by the values of an access type are called a

collection. In some implementations of the Ada language, a region of storage

is set aside for the allocation of the variables in a given collection. We

call this region of storage a collection region.

%:

w

m
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Section 2

REQUIREMENTS OF THE LANGUAGE

A number of storage management risks are inherent in the Ada language,

regardless of the way in which a particular implementation manages storage:

w

w

The number of simultaneously active invocations of a subprogram may

not be known until runtime, but each invocation requires storage for

its own instances of the variables declared in the subprogram body.

The number of designated variables a program attempts to create may
not be known until runtime, nor can it always be assumed that an

attempt to create a new designated variable wlll succeed Just because

the total amount of storage available for that purpose is sufficient
(fragmentation and internal management may interfere).

o The sizes of individual objects may not be known until runtlme.

o The number of tasks in a program may not be known until runtime.

The sections below elaborate on each of these risks.

w

m

2.1 Procedure-Call Based Allocatlon of Storage

Storage for variables declared in an Ada subprogram must, in general, be

allocated upon a call to that subprogram. While this is not an explicit

requirement in the Ada Language Reference Manual, it is a consequence of

certain language rules. These rules allow multiple invocations of a

subprogram, each with independent instances of the variables declared in the

subprogram, to be active at once. The number of simultaneous invocations that

will occur cannot always be determined before the program runs. A subprogram

call may raise Storage_Error if the amount of storage required for the new

invocation is not available.

m
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Multiple invocations may arise either from recursion or from multitasking.

In the case of recursion, a subprogram, executing within a single task, is

called by itself or some subprogram it has called before it has completed its

original processing. In the case of multitasking, two tasks may independently

execute the same subprogram concurrently and asynchronously. In either case,

each invocation has its own copy of the variables declared in the subprogram

body.

The variables created at the beginning of a subprogram invocation cease to

exist upon return from that subprogram. Furthermore, within any one task,

procedure invocations are properly nested. That is, if one procedure calls a

second, the return from the second call occurs before the return from the

first call. It follows that, if storage for variables declared in subprograms

is deallocated as soon as the variables cease to exist, the subprogram-

variable storage used by any one task follows a last-allocated

flrst-deallocated discipline. The storage used by a compiler for internal

bookkeeping related to a subprogram call--for example, storage for saving a

return address--also follows this discipline.

m

w

The Ada language rules do not impose any one storage-management mechanism

upon an implementation. However, the last-allocated first-deallocated

discipline is conducive to the use of a last-ln first-out stack by each task

to allocate storage for variables declared in the bodies of subprograms

invoked by that task. Storage locations that are on the stack would be

considered allocated and storage locations that are above the top of the stack

would be available for future allocation. Allocation would consist of

incrementing the top-of-stack pointer, and deallocatlon would consist of

decrementing the pointer.

2.2 Designated Variables

Designated variables are created by the evaluation of expressions called

allocators. Evaluation of an allocator raises Storage_Error if sufficient

storage for the object is not available. The number of times an allocator is

evaluated depends on the paths taken through a program, including the number

W0-123 Vol. 3 2-2
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of times that loops containing allocators are repeated. The paths taken in a

program, in turn, may depend upon input values. Thus the number of designated

variables a program attempts to create cannot always be determined before the

program runs.

While the storage allocated for declared variables follows a

last-allocated first-deallocated discipline, the storage for designated

variables does not. Storage for designated variables is allocated upon the

evaluation of an allocator. It may be deallocated when the corresponding

access type ceases to exist, when the programmer releases the storage by

calling an instance of the predeflned generic procedure

Unchecked Deallocation, orwhen the implementation determines that a

designated variable has become inaccessible to the program because no

accessible access value points to it.

A desirable property of a storage-management scheme is that there be no

unusable storage, that is, that an attempt to allocate a block of a given size

should fail only if the total amount of available storage is less than the

size of the required block. Storage that obeys a last-allocated

flrst-deallocated discipline can be implemented with a stack so that the

entire amount of unallocated storage is available for allocation, even as a

single block. Even if a region of storage does not obey a last-allocated

first- deallocated discipline, if blocks of a uniform size are allocated and

deallocated, then the total number of blocks that can be allocated at any one

time is equal to the amount of available storage divided by the uniform block

size.

If the designated type is an unconstrained composite subtype, different

designated variables may be of different sizes. Unchecked deallocation of

small variables may free small blocks of storage that are not contiguous, so

that allocation of a large variable may be impossible even if the total amount

of storage remaining in the collection region is sufficient. This phenomenon

is called fragmentation of storage. Fragmentation is discussed further in

Section 3.3.1.
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2.3 Runtime Determination of Object Sizes

The size of an object in an Ada program may be determined at runtime and

may be arbitrarily large. Thus the amount of storage needed by an object

cannot always be determined, let alone allocated, before a program is run.

Among the objects whose size may be determined at execution time are declared

variables, designated variables, and compiler-generated objects.

Objects may be created by the elaboration of declarations like:

or

Data List: array (i .. N) of Float;

Matrix_Product: Matrix_Type (Left'Range(1), Right'Range(2)) of Float;

In the first of these declarations, N might be a subprogram parameter, for

example, or a variable declared earlier and initialized by calling some

function. In the second declaration, Left and Right might be subprogram

parameters whose dimensions determine the size of the declared array

Matrix Product. The elaboration of an object declaration may raise

Storage_Error if sufficient storage for the declared object is not available.

Similarly, the size of a designated variable may be determined by

expressions inside the allocator whose evaluation creates the variable:

m

i

Data_List_Pointer := new Float_List_Type (I .. N);

Matrix Product Pointer :=

new Matrlx_Type (Left'Range(1), Right'Range(2));

Different evaluations of the same allocator may create designated variables of

different sizes. For example, the first statement above may be preceded by a

procedure call to read the value of N from an input file. The size of the

object specified in a particular evaluation of an allocator may determine

whether or not that evaluation raises Storage_Error.

WO-123 Vol. 3 2-4
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Array-valued expressions may specify array values whose length cannot be

determlned until the expression is evaluated during program execution. Often

the compiler must generate new internal objects at runtime to hold the values

of these expressions. Storage_Error may be raised if insufficient storage is

available to create these objects. Examples include the aggregate

(i .. N => 0.0)

whose length depends on the value of N and the catenation

w

w

L

A&B

whose length depends on the lengths of the arrays A and B, Sometimes the context

in which such an expression appears determines the length of the result, but

sometimes it does not. For example, the expression may appear in a return

statement in a function whose result subtype is an unconstrained array type; or

it may appear as a parameter to a subprogram whose corresponding parameter

subtype is an unconstrained array type.

Though the above discussion concentrates on runtlme determination of the

size of an array, much of it also applies to the size of a record with

discrimlnants. A dlscrlminant may control which fields are present in the

record, the size of record components that are themselves arrays, and the

discriminants of record components that are themselves records (in some other

type). Any of these properties may affect the size of the record. The

declaration of an object in a record type or an allocator for a designated

variable in such a type may contain a discriminant constraint, evaluated at

runtime, determining the value of the record's discriminants and hence the

required size of the record object. (Alternatively, an allocator may specify

discrlminant values by providing an expression, evaluated at runtime, giving

the initial value of the entire record), An object in a record type with

dlscrimlnants can sometimes be declared without a discrlminant constraint.

Such an object is unconstrained and must be large enough to accommodate any

value in the record type. (Designated variables in a record type with

discriminants are always constrained). Like array values, record values may
l

be described by aggregates, but the dlscrlmlnants in a record aggregate are
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always fixed and determinable before runtlme. A function call may return a

value of unknown size in a record type with dlscrlmlnants.

2.4 Runtlme Determination of the Number of Tasks

An Ada program may create new tasks as it executes. The number of tasks

that will be created cannot always be determined before runtlme. Thus it may

be impossible to allocate in advance the storage areas that will be used by

all tasks. The creation of a task object may raise Storage_Error if the

implementation attempts to reserve some amount of storage for the

corresponding task and that much storage is not available.

Tasks may be created by the elaboration of a task object declaration or

the evaluation of an allocator for an object in a task type. If a recursive

subprogram contains a declaration of a task object, a new task will be created

at each level of recurslon, but the depth of recurslon may depend on runtime

values. Similarly, each evaluation of an allocator may create a new

designated task object, but the number of times an allocator is evaluated may

depend on such factors as the number of time a loop is repeated. The number

of tasks created when a declared or designated array of task objects is

brought into existence depends on the size of the array. As explained in

Section 2.3, this size may be determinable only at runtime.

w

w

w

w
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Section 3

MANIFESTATIONS OF CURRENT IMPLEMENTATIONS

3.1 Global ,Storage-Management Strategies

This section discusses strategies for managing the storage space available

to a main program. Each task in the program implicitly allocates and

deallocates declared variables and compiler-generated working areas following

a stack (i.e., last-allocated first-deallocated) discipline. In addition, the

program may explicitly allocate and deallocate designated variables in an

arbitrary order. The Ada language does not specify how or when an

implementation assigns various regions of storage to play specific roles.

There are a number of strategies available to implementations. We begin with

a scheme in which all available memory is used as a stack, and then describe

other schemes as variations on the stack scheme.

3.1.1 A Pure Stack Model

Firth [Fir85] describes a strategy based entirely on a stack. This

strategy is facilitated by certain consequences of the Ada language definition:

O The maximum amount of storage available for a task's stack may be
restricted to the amount reserved by a length clause of the form

for task_type_name'Storage_Size use expression;

or to a default maximum.

The maximum amount of storage available for allocation of variables

designated by an access type may be restricted to the amount reserved
by a length clause of the form

for access_type_name'StorageSize use expression;

or to a default maximum.
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If an access type is declared in a subprogram body or task body, then

the access type ceases to exist upon return from the subprogram or

termination of the task. All variables designated by that access

type become inaccessible and their storage may be reclaimed.

If a task object is declared in a subprogram body or a task body,
then departure from that body cannot occur until the declared task
terminates.

If an access type designating a task type is declared in a subprogram

body or task body, then departure form that body cannot occur until

all allocated tasks pointed to by values in that access type have
terminated.

In the stack model, all available storage is viewed as forming a single

stack. Among the items pushed onto this stack, however, may be large blocks

of storage used as "substacks" by tasks. Substacks may themselves contain

substacks. Each activated task will have its own flxed-sized stack. A stack

or substack may also contain large blocks of storage used as collection

regions.

Certain storage can be allocated before the main program begins execution.

This storage consists of:

m

storage for each variable declared in a library package

runtime information about each type and subtype declared in a library

package

for each access type declared in a library package, a flxed-size

region for allocating variables that will be designated by that type

for each task object declared in a library package, a fixed-size

region for that task's stack

(By library package, we mean both the specification and body of a package that

is not nested inside any other program unit, either physically or as a

subunlt). We think of this storage as being pushed onto an initially empty

stack. This storage remains at the bottom of the stack for the duration of

the program. The remainder of the stack (i.e., the remainder of free storage)

is available for use by the implicit task that executes the main program.

V0-123 Vol. 3 3-2
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(For the most part, the storage allocated before invocation of the main

program can be allocated statically. In unusual cases, however, the size of a

variable declared in a library package must be determined dynamically during

the elaboration of library packages. For example, consider the following

package:

with Calendar; pragma Elaborate (Calendar);

package Sales_History_Package is

Sales This Year:

array (i .. Calendar.Month (Calendar.Clock)) of Float;

end Sales_Hlstory_Package;

The array Sales This Year wlll contain one component if the package is

elaborated during January, two components if the package is elaborated during

February, and so forth).

During the execution of any task, including the implicit task executing

the main program, certain events may occur that entail allocation or

deallocation of storage. Storage within a stack is allocated upon activation

of the task or upon a subprogram call, and deallocated upon the return from a

subprogram. Storage within a collection region Is allocated upon the

evaluation of an explicit allocator; it may be deallocated when an instance of

the generic procedure Unchecked Deallocatlon is called or when the
n

implementation determines that a designated variable is no longer accessible.

An activation record is pushed onto a task's stack when the task calls a

subprogram, and popped off the stack when the subprogram returns. Thls

activation record includes the storage for any variables declared in the

subprogram body and storage for runtime information about types and subtypes

declared in the subprogram body. If the body of the called subprogram

contains a task-object declaration, the activation record also includes a

large block for use as a stack for that task. If the body of the called

subprogram contains an access-type declaration, the activation record also

includes a large block for the corresponding collection region. Upon the
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initial activation of a task, its stack contains an activation record

corresponding to the declarations in the task body.

w

This scheme, together with constraints imposed by the Ada language,

ensures that storage areas remain on the stack for as long as they are needed.

Since a subprogram cannot complete its return until the tasks declared inside

it have terminated, the storage allocated to serve as stacks for those tasks

will not be popped off their containing stack before those tasks have

terminated. Since designated variables become inaccessible upon return from

the subprogram in which the corresponding access type is declared, the storage

allocated for collection regions will not be popped off the containing stack

until all variables in the corresponding collections are inaccessible.

Upon evaluation of an allocator, storage for the explicitly allocated

object is taken from the collection region associated with the corresponding

access type. If the allocated object is a task object, the storage allocated

includes a large block of storage to be used as a stack for the corresponding

task. If the corresponding access type was declared inside a subprogram body

or task body, departure from that body cannot occur until the newly allocated

task terminates. This guarantees that the activation record containing the

collection region will remain in existence, providing a home for the task

stack, as long as the task executes.

In the pure stack model, Storage_Error may be raised upon any of the

following events:

m_
w

o Elaboration of library packages before execution of the main program

consumes all the available storage.

When a task calls a subprogram, there is not enough room on the stack

for the subprogram's activation record. The factors contributing to

the size of the activation record are the amount of storage required

by variables declared in the subprogram body, the amount of storage

required for storing runtime information about types and subtypes

declared in the subprogram body, the amount of storage required for

collection regions associated with access types declared in the

subprogram body, and the amount of storage required for the stacks

associated with task objects declared in the subprogram body.

W0-123 Vol. 3 3-4
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O When a task is activated, there may not be enough room on the task's
stack for the first activation record. The size of this activation

record is determined by the declarations in the task body in the same

way that the size of an activation record for a subprogram call is

determined by the declarations in the subprogram body.

O When an allocator is evaluated, there may not be a large enough block of

storage in the corresponding collection region for the allocated object

or, in the case of an allocated task, for the allocated task control

block plus the new task's stack. Because of fragmentation, this may

happen even if the total amount of storage remaining in the collection

region exceeds the size of the block of storage to be allocated.

Given knowledge of the following f_ctors, it may be possible to determine that

an implementation based on a pure stack model will not raise Storage_Error:

O

O

O

Total available storage

The amount of storage allocated before execution of the main program

The size of each subprogram's activation record, each access type's
collection region, and each task's stack

The subprogram calling graph

The maximum number of designated variables to be allocated in each
collection and the maximum size of each such variable

The size of each access type's collection region and each task's stack can be

controlled by length clauses. The storage fragmentation problem could be

avoided by additional implementatlon-deflned pragmas dividing an unconstrained

composite type's collection region to subreglons for different subtypes. This

would reduce flexibility in the use of the collection reKion's storage; but

make it easier to guarantee the absence of Storage Error without assuming a

worst-case size for each designated variable.

w

3.1.2 A Global Heap

Rather than assigning all available storage to a stack, an implementation

can use some storage as a stack and some as a heap. The stack is used for

storage of relatively small objects that obey a last-allocated

first-deallocated discipline. The heap may be used for larger regions of

storage or for storage that may be deallocated in an arbitrary order.
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It is not necessary to determine in advance how much storage is to be

allocated to the stack and how much to the heap. The stack can be placed at

one end of storage and the heap at the other. Both can then be allowed to

grow towards the middle of storage as the need arises. StorageError is

raised by an operation that would cause the stack and the heap to meet.

There are two obvious approaches for using a heap:

O

O

Rather than imposing a maximum collection-region size for each access
type so that collection regions can be placed on a stack, an

implementation may use a single heap for allocation of all designated
variables.

Rather than pushing substacks for newly created tasks onto a larger

stack, an implementation may allocate work space for newly created
tasks from the heap.

Either of these variations on the pure stack approach might be adopted

individually, or they could be combined in a number of ways:

O

O

Either a single heap or two separate heaps might be used for

designated variables and for task work spaces. However, the use of

two heaps plus a stack requires a priority partition of storage into

at least two regions if runtime relocation of a heap or a stack is to

be avoided. The first of these two regions might be for a fixed-slze
heap while the stack and the other heap grow towards the middle of

the second region; or the first region might be for a bounded stack

while the two heaps grow towards the middle of the second region.

For access-type declarations elaborated by a task (either in the

task's body or in the body of a subprogram called by the task),

storage for the corresponding collection might be taken from within

the task's work space or from the "top level" heap for designated
variables.

For designated task objects, the work space for the corresponding

task might be taken from the storage allocated for the task object or

from the "top level" heap for task work spaces.

For "dependent" task-object declarations elaborated by a "master"

task, work spaces for the dependent tasks might be taken from the

"top level" heap for task work spaces or from the work space of the
master task.
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It is not clear what benefit is derived by moving fixed-length substacks

for declared task objects off the declaring task's stack. Whether placed in

the heap or in an enclosing stack, the size of each individual substack

remains bounded. Furthermore, substacks for declared task objects continue to

be created and destroyed in synchronization with the expansion and contraction

of the declaring task's stack. In Section 3.1.3, however, we consider

implementations in which unbounded task stacks can be allocated. In such

implementations, it is certainly worthwhile to allocate the storage for task

stacks from someplace other than the main stack.

w i

w

In contrast, there is an obvious benefit gained from the use of a single

heap for all collections of designated variables: Rather than reserving

specific regions of storage in advance for specific collections, we allow the

runtime system to use available heap storage to satisfy current needs. There

is a limit on the maximum amount of storage available for designated

variables, but individual collections are allowed to grow and shrink within

this limit. At points in a computation at which few variables are allocated

within one collection, there is more storage available for other collections.

w

There are also disadvantages to the use of a slngle heap. One is the

difficulty of exploiting the lack of an upper bound on each individual

collection while still ensuring that the total amount of storage in use at any

one time does not exceed the global maximum. The other is ensuring that, even

if the global maximum is not exceeded, the available storage does not become

so fragmented by allocation and deallocation of small designated variables

that it becomes impossible to allocate a large designated variable.

To some extent, these disadvantages can be mitigated by length clauses.

In conjunction with a single fixed-length heap, length clauses serve to place

a lower bound, but not an upper bound, on the amount of storage reserved for a

particular des'ignated type. Let Ri be the amount of storage reserved by

length clauses for collection i (zero if there is no length clause for

collection i), let Ai be the amount of storage already allocated for

collection i, and let H be the amount of storage in the heap. The amount of

storage that must be reserved for future allocations to collection i, Fi, is

then defined by: '"
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R i - A i if A i < R i

Fi = [

0 if A i > R i

The invarlant

(H - E A i) > E F i

expresses the requirement that there always be enough unallocated storage

available to allow each collection to grow to at least its reserved size.

we force an attempted allocation of size n to collection j to raise

Storage_Error unless either

(I)

If

w

w

w

Or

Rj - Aj > n ' (2)

(H - E A i - E Fi) > n

then every successful allocation will maintain the invarlant (I).

(2) asserts that the allocation can be performed using storage that has been

reserved for the collection but is not currently allocated. Condition (3)

asserts that, regardless of whether collection j has already been allocated

more storage than was reserved for it, an allocation of size n can be

performed while leaving enough storage for every collection to grow to its

reserved size). The invariant (i) is true at the beginning of the program

provided that

(3)

(Condition

H> ER i

(i.e., that the total amount of storage reserved does not exceed the size of

the heap).

Though allocation is required to fail when both Condition (2) and

Condition (3) are false, the truth of Condition (2) or Condition (3) does not

guarantee that allocation will succeed. Rather, when both invariant (1) and

either Condition (2) or Condition (3) holds, the total amount of unallocated

storage is sufficient for the allocation to succeed and for invariant (i) to

remain true afterwards; but this unallocated storage may be too fragmented for

n contiguous units to be allocated.
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There are two closely related approaches to resolving the fragmentation

problem:

O

Fragmentation can be prevented by avoiding deallocation, or least
avoiding dependence on the availability of deallocated storage. The

programmer would plan the use of storage as if deallocatlon had no
effect. The implementation's allocation policy would not reduce the

value of A upon deallocation from collection j. Consequently, the j

implementation would raise Storage Error if an allocation were
attempted and not enough virgin storage remained to guarantee that

all reserved storage could be allocated.

An implementation might use length clauses to set aside contiguous

blocks of storage for each collection, as in the pure stack model,
but allow a collection to obtain storage from the shared heap once

its own reserved storage has been exhausted. Then, even in the

presence of deallocatlon, fragmentation will be restricted to the

shared heap and to collection regions for unconstrained composite

types in which variables of different sizes are to be allocated.
Fragmentation in the shared heap is insignificant because the heap is

used only for storage beyond the reserved amount. Fragmentation in a

collection region for an unconstrained composite type is unavoidable
unless the region is partitioned into separate subreglons for each

subtype of the type.

3.1.3 A Se_rmented Virtual Memory

Ideally, one would like to create an unbounded collection region each time

an access-type declaration is elaborated and an unbounded task stack each time

each time a task is activated. This ideal is, of course, impossible to

achieve on a computer with finite memory. It can, however, be approximated on

a paged, segmented architecture with a large virtual address space.

The approach is simply to create a new segment for each collection region

and each task stack. Because the address space is paged, a large number of

extremely large segments can be created without setting aside large blocks of

physical memory: Physical memory is not assigned to a segment until storage

on a page is actually allocated; contiguous pages in the segment can then be

mapped to noncontiguous page frames in physical memory, making a priority

partition of the physical address space unnecessary. Thus segments can grow

gradually, independently of each other, as new designated variables are
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allocated and new activation records are pushed onto the stack. As physical

address space is exhausted, some pages will be "paged out" onto a backing

store and data references will be slowed down by an increasing number of page

faults.

Storage_Error will not occur unless a segment expands to fill all its

pages or the maximum number of segments is created. However, both the size of

a segment and the maximum number of segments can be quite large: In the

Multics operating system designed for the Honeywell 645 (originally General

Electric 645) computer in the mld-to-late 1960's and early 1970's, virtual

addresses consist of an 18-bit segment name and an 18-bit index into a

segment, thus allowing 256K segments of 256K words [BCD72]. A segment used as

a collection region is not likely to be exhausted unless several extremely

large arrays are allocated. A segment used as a stack is not likely to be

exhausted unless large arrays are declared in a deeply recurslve subprogram

(or in the case of infinite recurslon, which reflects a programming error).

The set of segments is unlikely to be exhausted unless extremely large numbers

of tasks are created (e.g., by declaring a large array of tasks or by

allocating designated task objects in a loop).

Today, this approach has limited applicability for fllght-control

applications. Current flight-control computers do not have paged, segmented

memories with large virtual address spaces. Furthermore, the delays

associated with page faults may be incompatible with real-tlme constraints.

This problem can be mitigated by programs that make heavy use of multitasking,

so that one task can continue useful work after another task encounters a page

fault; indeed, it is precisely for programs with large numbers of tasks that

the segment approach is most useful. The problem can be eliminated with

backing stores based on large semiconductor memories rather than mechanical

mass-storage devices.

3.1.4 A Linked Stack

In contrast to viewing all of storage as a stack and allocating small

heaps (collection regions) on the stack, we can view all of storage as a large
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heap. A stack can be constructed within this heap as a linked llst of

dynamically allocated activation records. When an activation record is popped

off a stack, the activation record's storage is returned to the heap. The

stack for the task invoking the main program and the stacks for other tasks

can be treated indistinguishably. No stack has bounded length and it is

unnecessary to partition memory into stack space and heap space. So that an

activation record of adequate size can be allocated before the corresponding

declarative part is elaborated, variables whose size is determined at runt,me

can be allocated outside of the activation record, with fixed-size pointers to

these variables placed inside the activation record.

When a program refers to entities declared in surrounding program units

(e.g., to global variables), the relevant data is located in activation

records other than the one on top of the stack. A linked .stack does not

provide direct access to data in lower activation records in terms of an

offset from the top of the stack. However, a contiguous stack does not

provide the required kind of direct access either, because the activation

record for the relevant invocation of the surrounding unit may be arbitrarily

deep in the stack. (Consider the following example:

w

D

procedure P is

Global Variable : integer;

procedure Q is

begin
if Global Variable > 0 then

Global-Varlable := Global Variable - I;

Q; ---recursive call -

lie

else

,oo

end if;

end Q;

begin -- P

Get (GlobalVariable);
Q;

end P;

w
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P calls the nested procedure 0 which calls itself recursively some number of

times that cannot be known beforehand. The stack contains an activation

record for P below a number of activation records for Q, one for each

recursive invocation. When an invocation of Q refers to Global_Variable, it

must refer to the activation record for P).

m

w

A data structure called a display is used in contiguous stacks to provide

direct access to activation records of interest lower in the stack. A display

can also be used in a stack built as a linked list of activation records. A

display is essentially an array of pointers to activation records for relevant

invocations of textual surrounding program units. Displays can easily be

maintained by placing a copy of the current display in each activation record,

but another implementation, more efficient for deeply nested programs,

requires only one display for each task stack.

w

E-

When there are several parallel invocations of task units in the same

surrounding program unit, each task stack's display contains a pointer to the

activation record for the surrounding program unit. Thus each task stack can

be seen as an independent extension of the stack containing that activation

record, as if the stack, growing upward, grew several branches, each of which

continued to grow on its own. This kind of stack is therefore sometimes

called a cactus stack. [B&W73] discusses in depth a variation of the cactus

stack, more general than is necessary to implement Ada.

The obvious drawback of a linked stack is that it induces fragmentation.

Fragmentation occurs not only within the limited context of a single

collection region, but in the entire space of available memory. The impact of

fragmentation can be reduced by always trying to find allocatlon-record

storage at one end of memory and other storage at the other end of memory.

Then storage allocation and deallocation patterns will approximate those of

the single stack/slngle heap implementation discussed in Section 3.1.2.

Indeed, for one-task programs, in which all activation records follow a strict

last-allocated first-deallocated discipline, the end of memory from which

activation records are allocated will behave precisely as a stack.

u

m
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The overhead of pushing and popping is likely to be higher for a linked

stack than for a stack implemented with a stack pointer into a contiguous

region. Upon pushing, code must be executed to search for a sufficiently

large block of available storage. Upon popping, code must be executed to

merge adjacent free areas. A general-purpose linked-stack allocation scheme

may mimic a contiguous-stack scheme for single-task programs, but the added

overhead will be incurred even when the blocks used to build a linked stack

happen to reside contiguously in bottom-to-top order.

A length clause reserving a certain amount of storage for a collection or

for a task stack may actually be counterproductive when a llnked-stack

implementation is used. The attempt to reserve storage may trigger a

Storage Error as soon as an access-type declaration is elaborated or a task is

activated, simply because the amount of storage that has been reserved for the

peak storage usage of the collection or the task is not currently available.

In a pure-heap storage allocation scheme there is no reason to set specific

storage aside until it is actually needed. Since storage currently in use by

other collections or other tasks may be freed before this peak is reached, it

may be possible to avert StorageError by not reserving storage ahead of time.

Length clauses might help to control which tasks raise StorageError when the

global storage resource is exhausted, but this capability is seldom useful.

rl

i

It is not clear whether an implementation using linked stacks can choose

to reject a length clause for 'Storage Size, or nominally to accept it but to

interpret in such a way that it has no practical effect. It is the intent of

the Ada Language Reference Manual that an implementation accept all

representation clauses that, in the words of Reference Manual Section 13.1,

"can be handled simply by the underlying hardware." Furthermore, Reference

Manual Section 13.2 clearly states that a length clause for the 'Storage Size

attribute "specifies the number of storage units to be reserved" for a

collection or for the activation of a task. On the other hand, notes at the

end of Section 13.2 (which are not technically part of the Ada standard but do

serve to shed light on the intent of the language designers) suggest some

flexibility:

m

w
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What is considered to be part of the storage reserved for a

collection or for an activation of a task is implementatlon-dependent.

The control afforded by length clauses is therefore relative to the
implementation conventions. For example, the language does not define

whether the storage reserved for an activation of a task includes any

storage needed for the collection associated with an access type
declared within the task body. Neither does it define the method of

allocation for objects denoted by values of an access type. For

example, the space allocated could be on a stack; alternatively, a

general dynamic allocation scheme or fixed storage could be used.

3.2 Treatment of Function Results in Unconstrained Subtypes

m

W

w

w

m

I

As noted in Section 2.3, the Ada language allows function results that are

arrays of unknown size. Function results can also be records of unknown size.

There are a number of ways to implement the return of such values to the

function caller. To illustrate these alternatives, we shall consider the

following contrived function:

function String Plus Reversal (S: String) return String is
Reversal :-String (S'Range);

begin

for I in Reversal'Range loop

Reversal (I) := S (S'Last + 1 - I);

end loop;

return S & Reversal;

end StringPlusReversal;

The function call Strlng_Plus_Reversal ("ABCD") returns the string "ABCDDCBA",

for example.

In languages like Pascal that do not allow composite function results, it

is common to reserve a word at the very bottom of an activation record to hold

the function result. Upon return from the function, all of the activation

record except for its bottom word is popped from the stack, leaving the

function result at the top of the stack, where it can beinterpreted as part

of the calling subprogram's activation record. An alternative approach for

languages without composite function results is simply to place function

results in a fixed register before returning. Neither of these approaches

provides a complete solution for Ada function results.
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For contiguous stacks, a variation that can accommodate varlable-slze

function results is to place the function result at the top of the activation

record. Once the length of the result-value expresslon S & Reversal is

determined, the stack can be extended by that amount. The problem with this

approach is that the calling subprogram cannot reuse the storage occupied by

the returned function's activation record until it has moved the function

result; otherwise the stack might expand past the top of the popped activation

record and overwrite the function result. The calling subprogram could

immediately copy the function result from the old top of the stack to the new

top of the stack as soon as the returned function's activation record is

popped, but this can be tlme-consumlng if the function result is a large array.

Retaining the returned function's activation record on the stack even

after the function has returned, but before the function result is used, can

be expensive in terms of space. In the String_PlusReversal example, this

activation record includes storage for the variable Reversal, which can be

arbitrarily large. This problem can be magnified if the function call is part

of a larger expression, like

String_Plus_Reversal (Sl) &

(String_Plus_Reversal (S2) & String_Plus_Reversal (S3))

because the results of the first two calls on Strlng_Plus_Reversal cannot be

disposed of until the result of the third call is available. Thus the "dead"

activation records for the first two calls must remain on the stack until the

third call is complete.

If a linked stack is used, the activation record must be allocated at the

beginning of the function call and cannot simply be extended once the size of

the function result becomes known. Rather, additional space for the function

result must be allocated from the heap. A pointer to the function result

might be placed in a fixed part of the activation record or in a register, as

in typical Pascal implementations. (Pascal programmers sometimes write

functions returning pointers to composite results because they cannot write

functions returning composite values directly. An Ada compiler can perform

the same transformation behind the scenes).
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While the placement of a function result in the heap is essentially

required for a linked stack, it is also an appropriate approach for a

contiguous stack. A moderate storage-management overhead is incurred, but the

penalties are not generally as severe as for sliding function results down the

stack or retaining dead activation records on the stack. A compiler can

easily distinguish cases in which indirect pointers to function results are

required from those in which they are not, using pointers only for functions

whose result subtypes are unconstrained composite types.

One strategy employed by optimizing compilers to minimize movement of data

is to pass a target address for the function result as an implicit parameter

to the function. The effect of the return statement is then to copy the

result value directly to this address before returning control to the calling

subprogram. In the assignment statement

Theta := Arc Sin (R);

for example, the address of Theta would be passed along with the value of R to

the invocation of Arc_Sin, and the code generated for the return statement in

the body of Arc Sin would copy the return value directly into Theta. In a

context like

L Theta := Arc_Sin (R) + Offset_Angle;

the address passed to Arc Sin would be that of some compiler-generated

temporary variable used in the subsequent addition. This approach can be

adapted to the return of certain composite function results. Instead of

passing just the address of the target location, the compiler would also pass

its length. In the case of the assignment statement

Y := String_Plus_Reversal (X);

for example, the address and declared length of Y would be passed to the code

for String Plus Reversal. The code for the return statement would use this

length in copying the computed function result to its intended target, or

raise Constraint Error if the length of the computed result did not match the

length of the intended target. (To the programmer, ConstraintError would
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appear to be raised by the assignment statement containing the function call).

Unfortunately, a function call can appear in a context where the length of the

function result is unknown:

Put (String_Plus_Reversal (X));

return String_Plus_Reversal (Sl) & String_Plus_Reversal (S2);

Since code for the return statement must be generated without knowledge of the

context in which the function will be called, the encoding of the target

length must include a special code meaning "unknown." In the body of a

function with an unconstrained result subtype, the instructions generated for

a return statement must check for this special code and return the function

result in some other manner (e.g., by indirect reference to a location in the

heap) when the code is encountered.

3.3 Non-FIFO Storage Allocation and Deallocation

Any Ada implementation must deal with the management of storage that does

not obey a last-allocated first-deallocated discipline. If the pure stack

implementation described in Section 3.1.1 is used, this problem arises in the

management of individual collection regions. If the shared-heap approach of

Section 3.1.2 is used, the problem arises in the management of the shared

heap. If the linked-stack implementation of Section 3.1.4 is used, the

problem arises in the management of all free storage.

Only in the case of an implementation for a segmented virtual memory can

the problem be totally ignored: As physical memory space becomes scarce,

pages containing only data eligible for deallocation will not have been

recently used, and will be prime candidates for replacement. Virtual memory

space becomes scarce only after extensive use, so it may be reasonable for

some implementations to raise Storage_Error when this happens rather than

trying to reuse virtual address space.
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Algorithms for allocating storage and algorithms for deallocatlng it are

closely intertwined, since both manipulate the same data structures. Section

3.3.1 explores several allocation/deallocation strategies. Section 3.3.2

explores implementation options in determining when allocation should take

place.

3.3.1 Allocation and Deallocatlon

Allocation and deallocatlon of storage is a classic problem, explored in

depth in Section 2.5 of [Knu73]. The fundamental difficulty that must be

overcome is fragmentation. The amount of fragmentation resulting from a given

sequence of allocations and deallocations depends on how available storage is

selected and how freed blocks of storage are reunited with neighboring blocks

of free storage.

Fragmentation is not a problem when all allocations from a given pool of

storage are of the same size. Freed blocks can simply be placed on a linked

list of available blocks, usually called the free list. Assuming that the

uniform block size is large enough to hold a llst link, the links in the free

list can reside within the blocks themselves, so that no storage overhead is

required. If the uniform block size is small (e.g., if an access type is

declared for pointers to Boolean or Character values), the block size may be

expanded to accommodate links. Alternatively, a list of bits, with one bit

indicating the availability of each block, might be associated with each pool

of storage.

A good Ada compiler can recognize pools of storage for which all

allocations are of the same size, and use simple and efficient fixed-block-

boundary methods for managing storage in those pools. For implementations

based on collection regions, fixed lock boundaries are possible for any access

type designating a noncomposite subtype or a constrained composite subtype. In

a record type with variants, if there is not too much variance among the

storage requirements of each variant, it may be worthwhile always to allocate

the amount of storage required for the largest variant. The amount of storage

wasted in this way may well be less than the amount that would be wasted by.
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fragmentation or by complex storage-management data structures if different

block sizes were used for different variants; time is certain to be saved by

the resulting simplicity of allocation and deallocatlon. Since the space lost

or saved and the desirability of various time-space tradeoffs will depend on

the application, it would make sense for this option to be controlled by an

Implementatlon-defined pragma.

When blocks of various sizes are to be illocated or deallocated from the

same pool, fragmentation can be overcome by compaction. If a situation arises

in which the amount of available storage is sufficient to perform a requested

allocation, but the amount of contiguous storage is not, blocks can be moved

within the pool of storage, with pointers to the blocks adjusted accordingly,

so that all available storage is united into one large block. Compaction is

generally complex, expensive (often prohibitively so in applications with

real-time constraints or limited storage space), and only marginally

beneficial. The principal difficulty is in locating and changing all

pointers. Since pointers may reside in various activation records on various

stacks, or in a collection region or heap, location of the pointers is an

awesome data-structure traversal problem. The problem is further complicated

by the fact that some of the pointers to be updated may themselves be moved by

the compaction. The time to locate and revise pointers can be reduced by

implementing access values as pointers to pointers, with the direct pointers

all stored together in a known location. Only the direct pointers need be

updated, but extra storage space is required. Perhaps most importantly, Knuth

[Knu73] observes, on the basis of experimental simulations, that

... the vast majority of cases in which the "first-fit" method

runs out of room actually would soon thereafter run completely out

of space anyway, no matter how much compacting and re-compacting

is done. Therefore, it is generally not worth while to write a

compacting program, except under special circumstances in

connection with garbage collection ....

(The "first-flt" method is a simple, noncompacting allocation strategy

discussed below. Garbage collection is discussed in Section 3.3.2.).

vmmd

z
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Knuth discusses three allocation/deallocation schemes in Section 2.5 of

[Knu731. They are the first fit system, the best-fit system, and the buddy

system.

The first-fit system maintains a linked list of free blocks of storage, in

order of storage location. Each block on the free list contains a block size

and a llst llnk at the beginning of the block. Initially, the list contains

one block consisting of the entire pool of storage. When a block of size n is

needed, the llst is searched for the first block whose size is at least n. If

no such block can be found, Storage_Error is raised. Otherwise, n units of

storage are allocated from the end of the block on the free list. The

beginning of the block remains on the list with the size decremented by n,

except that if n Is decremented to zero, the block is removed from the list.

Within the allocated block, a small amount of storage is reserved to hold the

size of the block; this information will be required when the block is

deallocated.

Two enhancements can reduce the time spent scanning past small free blocks

in search of a block large enough to satisfy an allocation request. First, it

is a good idea to make the free list circular and to begin each search for a

sufficiently large free block just past the point on the list where the

previous search left off. Otherwise, small blocks tend to accumulate near the

front of the free llst, slowing down subsequent searches. Second, if the

blocks being allocated are relatively large (for example, if the items being

allocated are task stacks rather than designated scalar variables), the search

can be sped up by eliminating from the free list blocks of storage that are

too small to be useful: If only a small amount of a free-list block would

remain free after allocating the requested amount, the entire block is

allocated and removed from the.free list, sacrificing free storage space to

reduce time.

When a block of storage is deallocated, it should be returned to the free

list. First, however, it should be merged with any neighboring free blocks,

so that previous fragmentation can be repaired to the extent possible. Knuth

presents two schemes for returning storage to the free list, one of which is

faster but'requires the use of additional space within each reserved block.
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The slower scheme is simply to search the free llst (which is sorted in

storage-locatlon order) until the last block preceding the newly freed block

is found. Using the length information in the freed block, it is possible to

determine which if any of the two surrounding blocks on the free list are

contiguous with it. The faster scheme uses an extra link field to maintain

the free list as a doubly linked, but unsorted, list. It also reserves the

first and last storage units of each block, whether it is free or allocated,

for use as a boundary tag. The boundary tags are set to one code in free

blocks and to another code in allocated blocks. When a block is freed, it is

possible to check the storage units just before the beginning of the block and

just after the end of the block--both of which are boundary tags of

neighboring blocks--to determine which if any of the two neighboring blocks

are free. Since the position of blocks in the free list need not be exploited

to determine whether neighboring blocks are free, the freed block can be

inserted arbitrarily at the beginning of the free list. The bl-directlonal

list links can be used to remove any free neighboring blocks from the free

llst so they can be merged with the newly deallocated block before that block

is returned to the free llst.

The best-fit system is similar to the first-fit system. Rather than

allocating storage from the first sufficiently large block that is found,

however, the best-fit allocation algorithm always searches the entire free

llst and allocates storage from the smallest sufficiently large block. Either

of the two deallocation schemes described above for first-fit allocation apply

equally well to best-fit allocation. However, Knuth [Knu73] strongly

recommends the first-fit scheme over the best-fit scheme:

Historically, the best-flt method was widely use for several

years; this naturally appears to be a good policy since it saves the

larger available areas for a later time when they might be needed.

But several objections to the best-fit technique can be raised: It is

rather slow, since it involves a fairly long search; if "best fit" is

not substantially better than "first fit" for other reasons, this

extra searching time is not worth while. More importantly, the

best-fit method tends to increase the number of very small blocks

[because a block on the free list is chosen to minimize the amount of

storage left over after allocation[, and proliferation of small blocks

is usually undesirable. There are certain situations in which the

flrst-fit technique is demonstrably better than the best-fit

method .... For these reasons the first-fit method can be recommended.
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Knuth offers experimental evidence, based on simulation, to support this

recommendation:

In all experiments comparing the best-fit and first-fit methods,

the latter always appeared to be superior. When memory size was

exhausted, the first-flt method actually stayed in action longer than

the best-flt method before memory overflow occurred, in most
instances.

L
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In the buddy system, the size of the available pool is a power of two and

the size of an allocated block is always the lowest power of two greater than

or equal to the requested size. If request sizes are evenly distributed, the

ratio of storage allocated to storage requested tends to lle somewhere between

1.33 and 1.50. Different free lists are maintained for each power of two.

Initially, all lists are empty except for the list corresponding to the size

of the entire pool p-I. If np units of storage are requested, where 2 <n<2 ,

and the free list for blocks of size 2p iS nonempty, then a block is taken

from that list. If all free lists for block sizes greater than or equal to 2

are empty, Storage_Error is raised. Otherwise, a block is taken from the llst

for the smallest size larger than 2p with a nonempty free llst, the block is

split in half, the two halves are placed on the free llst for the next smaller

size, and this process is repeated until the list for size 2p becomes

nonempty. When a block is split in two, the two resulting smaller blocks are

called buddies. Any time a block with a free buddy is deallocated, the

buddies are rejoined. The resulting larger block may itself have a free

buddy, so this process is repeated as many times as possible. The block

ultimately reconstructed is placed on the free llst corresponding to its size.

Adjacent free blocks of storage are never reunited unless they are buddies.

Buddy-system allocation and deallocation algorithms can be made quite

efficient by exploiting the binary representations of storage block addresses.

In most cases, the first-flt system using boundary tags is preferable to

the buddy system, but in special circumstances the buddy system may be

superior. A timing analysis, combined with a computer simulation, reveals

that with random block sizes and random deallocation times, the execution time

of the first-fit and buddy methods are comparable. However, the buddy system

imposes an average overhead of from 33 to 50 percent on the amount of storage

!
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used, because of its requirement that the sizes of allocated blocks be powers

of two. In applications for which allocation request sizes are naturally

powers of two (or slightly smaller), however, this overhead disappears.

Indeed, the buddy system tends to allocate a slightly larger portion of

available storage before fragmentation causes it to fall (irrespective of how

much of the allocated storage was actually requested). As allocation and

deallocation patterns approach a last-allocated first-deallocated pattern, the

performance of the first-fit system improves and the performance of the buddy

system deteriorates. In a linked-stack implementation, for example, the

allocations and deallocations of activation records for individual tasks each

follow a last-allocated first-deallocated pattern, so the sequence of

interleaved allocation and deallocation requests from all _asks may well

approximate such a pattern.

In some applications, Storage_Error is undesirable and should be made

extremely unlikely; in other applications, even a rare occurrence of

StorageError is unacceptable, and should be made impossible. Unfortunately,

Knuth indicates in Section 2.5 of [Knu73] that the necessary guarantees cannot

be provided by algorithms for allocating and deallocating blocks of various

sizes in arbitrary order from the same pool of storage:

J.M. Robson has shown [JACM 18 (1971), 416-423] that dynamic

storage allocation strategies which never relocate reserved blocks

cannot possibly be guaranteed to use memory efficiently; there will

always be pathological circumstances in which the method breaks down.

For example, even when blocks are restricted to be of sizes I and 2,

overflow might occur with memory only 2/3 full, no matter what

allocation algorithm is used[

Neither is there much hope of proving an upper bound on the amount storage

effectively lost through fragmentation. Knuth writes that "The mathematical

analysis of these dynamic storage-allocation algorithms has proved to be quite

difficult...," and adds, "...our knowledge of the performance of these

algorithms is based almost entirely on Monte Carlo experiments."

Statistical results are useless in guaranteeing that a program will not

exhaust storage. For applications for which Storage_Error is unacceptable,

conservative restrictions must be imposed, involving both the implementation's
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global storage-management strategy and the program's use of designated

variables. A strong restriction would be to regard non-FIFO deallocation as a

null operation. That is, programs and implementations would be permitted to

allocate blocks of different sizes from the same pool without following a

last-allocated first-deallocated discipline only if the required amount of

storage can be made available without returning any storage to the pool. This

approach reflects the fact that fragmentation can render much of the returned

storage useless. Somewhat weaker restrictions may be possible if we exploit

publicly documented characteristics of an implementation, though this will

reduce the portability of the program. For instance, most implementations

could, in theory, guarantee that immediately after a block of size n is

deallocated, a block of size n or less can be successfully allocated. Some

programs might be written to exploit this property by repeatedly allocating

and deallocating blocks of decreasing size.

For applications in which it is sufficient to make Storage_Error extremely

unlikely, Knuth's Monte Carlo experiments provide some important insights:

o For the variety of distributions of block sizes and allocation lifetimes

that Knuth explored, programs tend to reach a steady state in which the

average amount of currently allocated storage is the product of the mean

amount of storage requested per time unit and the mean number of time
units between allocation and deallocatlon of a block.

o ghen the expected amount of storage allocated at steady state exceeds

two-thirds of the available storage space, unfulfillable allocation

requests usually arise, often before the full amount of available

memory is actually needed.

o If all block sizes are small compared to the size of the pool from

which they are allocated, the pool can become over 90 percent

allocated without rejecting an allocation request; but if maximum

block sizes exceed one-third of the pool size, allocation requests

tend to become unfulfillable while less than 50 percent of the pool

is allocated. Therefore, Knuth recommends a ratio of at least I0:i

between the pool size and the maximum block size.

As the buddy system reaches a steady state, splitting and rejoining

of buddies becomes rare. Free lists for all block sizes tend to

remain nonempty.
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As allocation and deallocation patterns approach a last-allocated,
first-deallocated pattern, the speed of the first-flt scheme improved

considerably (with the free llst containing Just a few large items)

but the performance of the buddy scheme deteriorated (with more need
to split and rejoin buddies).

When the buddy system was unable to honor an allocation request,

storage was typically about 95 percent allocated (although the buddy
system allocates between 1.33 and 1.50 times as much storage as is

actually requested, on the average).

3.3.2 Control Over Deallocation

The Ada language makes three provisions for deallocating designated

variables:

O

O

O

A programmer may explicitly deallocate a designated variable by

calling an instance of the predefined generic procedure
Unchecked Deallocation.

The implementation may deallocate the entire collection of variables

designated by values of a given access type when that access type
ceases to exist.

The implementation may deallocate an individual designated variable

upon determining that that variable is no longer accessible.

The effect of calling an instance of Unchecked Deallocation depends on the

implementation's storage management scheme for the corresponding access type.

We would typically expect the call to invoke one of the deallocation

algorithms described in Section 3.3.1, so that the storage occupied by the

deallocated variable can be used In later allocations. Depending on the

implementation, the freed storage might or might not be united with

neighboring free blocks of storage. An implementor might claim that one

implementation of deallocation is simply to set the deallocated storage aside

without making it available for reuse, i.e., to do nothing. However, Section

13.10.1 of the Ada Language Reference Manual seems explicit in its requirement

that storage actually be recycled: "Unchecked storage deallocation of [a

designated variable] is achieved by a call of [an instance of

Unchecked Deallocation]." Furthermore, such a call (with a pointer to some

designated object) "is an indication that the object ... is no longer

required, and that the storage it occupies is to be reclaimed."

I
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An access type ceases to exist upon departure from the innermost

subprogram body, task body, or block statement in which it is declared. If

the implementation uses collection regions, this is equivalent to freeing the

storage occupied by the corresponding collection region. If the collection

region is stored on a stack, liberation of the storage is a side effect of

popping the top activation record off the stack.

Because a designated variable can only be referred to in terms of the

access value pointing to it, there is no way to refer to the variable once

that access value is no longer stored in an accessible location. Accessible

locations include not only declared variables, but also designated variables

pointed to by access values in other accessible locations. Designated

variables may be deallocated without any noticeable effect upon the program as

soon as they are inaccessible and, in the case of designated variables that

are task objects (or that contain task objects as subcomponents) the

corresponding tasks have terminated. The identification and deallocation of

inaccessible designated variables is called garbage collection. Section 4.8,

paragraph 7, of the Ada Language Reference Manual allows, but does not

require, garbage collection.

Garbage collection can be a complex process. In the case of a recursive

type (e.g., a type whose objects contain pointers to other objects in that

type), the determination that a given object has become inaccessible requires

the determination that all other designated objects containing pointers to the

given object have themselves become inaccessible. Thus garbage collection

begins with a marking phase in which all chains of accessible pointers are

traversed and accessible designated variables are marked by setting a special

bit set aside for this purpose. This is followed by a second phase in which

marked variables are deallocated. Free storage may be compacted durlng this

phase by relocating those designated variables that remain accessible.

Garbage collection can be quite time consuming, bringing normal processing

to a halt. A sustained cessation of processing can be avoided if garbage

collection is performed by a background process whenever processing time

becomes available. However, even this may be impractical in some real-time

applications. Furthermore, the effectiveness of garbage collection in making
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more storage available cannot be guaranteed. Therefore, the Ada language

includes a pragma, Controlled, that may be used to ensure that garbage

collection will not take place for a given collection.

3.4 Efficient Data Representation

Implementations may vary not only in their strategies for placing objects

in the available storage, but also in their determination of the size of an

object. Some implementations are more space-efflcient than others. Some

implementations provide the programmer with more control than others over the

amount of storage used for objects of a given type.

Lower bounds on object sizes for a scalar type are logical consequences of

the type definition. For example, an enumeration type with n values cannot be

represented in fewer than log n2 bits; an integer type with range L .. R

cannot be represented with fewer than log 2 (R-L+1) bits. Similar lower bounds

for representations of floating-polnt and fixed-point types can be derived in

terms of the number of model numbers in the type, since each model number

requires a unique representation.

Nonetheless, an implementation may use more than the logical minimum

amount of storage for a type. For example, if a machine uses elght-blt,

sixteen-bit, and 32-bit representatlons for integer data, then a compiler

might use a full eight bits for an enumeration type logically requiring only

five bits, or sixteen bits for an integer type logically requiring only nine

bits. Use of a smaller amount of storage might require the introduction of

loading, masking and shifting instructions that would considerably slow down

the execution of the object code.

The programmer may influence the size of objects in a scalar type in two

ways. First, the Optimize pragma advises the compiler to pursue code-

generation strategies that save time at the cost of space, or vice versa.

However, the compiler has complete freedom in determining how this advice is

to be applied, if at all. Second, a representation clause of the form
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for type_name'Stze use static_expression;

imposes a mandatory upper bound on the number of bits that may be used to

represent objects in the specified type. Section 13.1, paragraph I0, of the

Ada Language Reference Manual states, "An implementation may limit its

acceptance of representation clauses to those that can be handled simply by

the underlying hardware," and requires a compiler to issue an error message

for any representation clause it cannot accept. Until now, the term "simply"

has been liberally interpreted, giving compilers a considerable degree of

freedom in rejecting representation clauses. This has been a source of

dissatisfaction among developers of embedded-computer programs, and compiler

writers face strong market pressures to provide full support for

representation specifications.

The storage space required for a composite type depends not only on the

size of the components, but also on the amount of unused storage between

components and the amount of internal information stored with the composite

object.

Unused storage may be used to align array or record components on

appropriate storage-unlt boundaries, so that access to them wlll be fast.

Like the size of a scalar object, the amount of unused storage in a composite

object may be influenced by an Optimize pragma. Another pragma, the Pack

pragma, specifically advises the compiler to minimize unused storage In the

representation of a particular composite type. (The Optimize pragma

potentially affects all types). Representation clauses of the form

for type_name'Size use static_expression;

--if accepted by the compiler--can specify a mandatory tipper bound on the size

of objects in a composite type. Constraints on the maximum size of a

composite type may affect the amount of unused storage between components, but

they do not impose constraints on the maximum size of the components

themselves. Rather, the size of the components is determined beforehand and

used to ascertain whether the representation clause for the composite type can

be accepted.
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The size of a composite object may also be affected by the presence of

internal information. The representation of an array in an unconstrained

subtype must, in the general case, include enough data to determine the lower

and upper index bounds in each dimension of the array. Some optimizing

compilers may be clever enough to discover that all the bounds information

needed for certain individual arrays in the unconstrained subtype can be

ascertained at compile time, and to remove this information from the runtime

representations of those arrays. However, this condition is difficult to

detect and its application greatly complicates code generation. No runtlme

information need be stored with objects in a constrained array or record

subtype. In a record type with discriminants, all the required runtime

information can be deduced from the values of the discrlmlnants themselves,

though an implementation might store redundant information in the record to

speed up certain runtlme checks. (There may be additional runtime information

relating to the composite type itself, such as runtime constraints on

component values. However, this information need be stored only once per

type, most likely in the activation record corresponding to the unit

containing the type declaration.)

One special ease worth noting is the storage allocation for an

unconstrained record, one of whose components is an array with bounds

controlled by a discriminant. Here is an example:

type Varying_String_Type (Maximum_Length: Positive := 80) is

record

Current_Length : Natural := O;

Contents : String (1 .. Maximum_Length);

end record;

VS : Varylng_String_Type;

Since the variable VS is declared without a discriminant constraint, it is an

unconstrained record. Therefore, this variable must be capable of holding any

value in Varying_StringType. Since the discriminant VS.Maximum_Length may be

any value of subtype Positive, the array VS.Contents may, at times, consist of

as many as Positive'Last characters. (For typical implementations,
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Positive'Last is the largest number that can be represented in a signed word).

The usual implementation of an unconstrained-record declaration is to allocate

enough space in the current activation record for the largest value that the

record can assume. In the case of VS, this is almost certain to raise

Storage Error. However, an alternative is to place only a pointer to the

unconstrained record in the activation record and to allocate enough space in

the heap for the record's current contents. (VS.Contents'Length is initially

80). When VS is assigned a larger Varying_String Type record size, the heap

storage holding the old value is deallocated and a new block, large enough to

hold the record's new contents, is allocated. Alternatively, an

implementation might allocate only the Contents component of VS in the heap;

in the actlvatlon record, the implementation would place a Varylng_Strlng_Type

record containing the values of the other components and a pointer to the

Contents component.

7..."

In addition to scalar types and composite types, the Ada language has

access types and task types. Access values are typically implemented as

machine addresses, leaving no flexibility in the size of an access type's

objects. However, one can also envision access values for uniformly-sized

collections represented compactly as numbers that, when multiplied by the

uniform size of each designated variable in the collection, would provide an

offset from the start of the collection region. (Essentially, the collection

region would be treated internally as an array of flxed-sized components, and

access values would be indices into this array). The representation of a task

object depends entirely on the implementation of multitasking; there is no

lower bound on the size of a task object inherent in the Ada language. In

some implementations all task objects may have a uniform size, while in other

implementations task objects of different types might potentially have

different sizes.

3.5 Compiler Storage-Management Aids

A compiler can help to lower the risk of Storage_Error not only by the way

it generates code, but by the tools it provides to the programmer to analyze

and control the use of storage. These tools include information to help
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predict the availability of sufficient storage, implementatlon-defined pragmas

to select various storage-management options, and runtlme subprograms to

obtain information about current storage use.

A programmer can most easily guarantee that a program will not raise

Storage_Error if the program uses a simple storage-management scheme with

easily understood behavior. One characteristic of a storage-management scheme

that makes it easily understood is early binding: Storage blocks for specific

purposes are fixed in size and reserved as soon as possible, as in the

allocation of collection regions and substacks in the pure stack model. Early

binding guarantees that a known amount of storage is available for a given

purpose, but it also guarantees that the storage will not be available for

other purposes. Thus simplicity and predictability come at the expense of

flexibility in storage use. Early binding causes Storage_Error to occur after

fewer allocations than in the average case using late binding, but provides

certainty that Storage_Error will not be raised before that many allocations

have been performed. The following graph compares the probability of

Storage_Error after some number of allocations, using early and late binding:

Early binding is only useful, of course, if the programmer understands the

guarantees that it provides. Therefore, the compiler should come with

complete documentation describing how storage is set aside. In particular,

the documentation should explain the effect of length clauses for

'Storage_Size. According to the Ada Language Reference Manual, the meaning of

such a length clause is Implementatlon-dependent. In some cases the storage

reserved for a collection region may include allocation control information

and in other cases it may not, for example.

A compiler can help programmers determine the storage-management

characteristics of their programs by providing information about storage

representations. Invoked with appropriate options, a compiler might, for

example, report the value of the 'Size attribute for each type declared, as

well as the number of bits used to represent objects in anonymous types. For

arrays in unconstrained array types, the reported length could be a formula in

terms of the length of the array in each dimension. For record types with
l

discriminants, different lengths could be reported for each varlant; for a
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variant containing a component with its own index or discrlmlnant constraint,

the reported length could again be a formula. Even more helpful would be a

report on the size of a subprogram's or task body's activation record,

including both programmer-declared and compiler-generated objects. This size

would be expressed as a formula in terms of the nonstatic values appearing in

index and discrlminant constraints. We are aware of no compiler that

currently provides this information.

A compiler can help programmers control the storage-management

characteristics of their programs by providing implementation-defined pragmas

specifying elements of a storage-allocation strategy. Ve have already
I

mentioned two Implementation-deflned pragmas that might be useful:

a pragma to divide an unconstrained composite type's collection

region to subreglons for subtypes of different sizes, thus reducing
the flexibility with which the collection region's storage can be

used, but avoiding fragmentation

a pragma stipulating that all designated variables in a record type

with variants are to be stored in blocks of the same length, thus

forcing unused storage to be allocated for shorter variants, but
avoiding fragmentation and simplifying allocation and deallocation

algorithms

Other Implementation-defined storage-management pragmas can easily be

envisioned.

In addition to compile-tlme support, an implementation might provide

runtime support to determine and control the current state of the storage

pool. This runtime support would take the form of a set of

Implementation-defined subprograms. These subprograms might include:

o

O

O

N0-123

a function returning the amount of free storage available in some
storage pool such as a collection region or a global heap

functions returning measures of the fragmentation in some storage

pool, for example the average slze of a free block, the standard
deviation in the sizes of free blocks, or the number of contiguous

blocks at or above a given size

procedures explicitly invoking garbage collection in specified

collections or compaction of specified storage pools.
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O procedures expanding the size of the global heap, or of regions that

have been allocated for specific purposes

SlGAda's Ada Runtlme Environments Working Group (ARTENG) is compiling a

catalog of common interfaces through which Ada programs can control various

aspects of the runtime environment. The first release of that catalog

[ARTE86] does not include any storage-management interfaces, but storage

management and garbage collection are both specifically listed as topics for

future consideration.
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